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Abstract

The recent exchange on Error Correction Models in Political Analysis and elsewhere dealt
with several important issues involved in time series analysis. While there was much disagree-
ment in the symposium, one common theme was the lack of power due to the few number
of observations for much of this work. In this paper we highlight two well known but rarely
discussed problems this has for inferences from standard time series techniques. First, one
result of low power is inflated standard errors. One issue low powered time series can face is
that the confidence interval on a lagged dependent variable, even when the series is station-
ary, includes values ≥ 1. This is particularly problematic when calculating the confidence
interval of the long run multiplier. If the confidence interval of the lagged dependent vari-
able includes 1, the standard error of the long run multiplier will be explosive. Second, the
calculation of the long run multiplier is the ratio of coefficients, which makes the calculation
of the uncertainty slightly more complicated. Unfortunately, the two standard approaches
to calculating the uncertainty in the long run multiplier, the delta method and the Bewley
transformation, are asymptotically accurate, but may have difficulties in small samples. As
a solution, we suggest using a Bayesian approach. For autoregressive distributed lag models,
the Bayesian approach can formalizes the stationarity assumption by using a beta prior that
is strictly less than 1. With error correction models, the researcher can easily calculate the
credible region of the long run multiplier from the posterior distribution of the ratio of the
coefficients. As a result, we obtain theoretically informed estimates of the confidence regions
for the distribution of the long run multiplier.
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1. INTRODUCTION

The recent exchange on the utility of and concerns with error correction models did not
generate much consensus on the appropriateness of those models (e.g., Enns et al, 2016;
Grant and Lebo, 2016; Keele, Linn, and Webb, 2016). What is notable, however, that there
were at last two places of agreement between the authors that have implications for users
of time series models. First, as most clearly articulated by DeBoef and Keele (2008), it is
important for practitioners to calculate the long run multiplier (LRM) and its standard error
to present a complete picture of the effect of an independent variable. Second, many of our
time series applications are short and the small number of observations limits the power of
the estimation of specification tests and important parameters.1

This creates potential difficulties for two of the predominant approaches to estimating
models of stationary time series. The standard set up for an ADL(1,1;1) is:

Yt = α0 + α1Yt−1 + β0Xt + β1Xt−1 + ǫt. (1)

In the case of an autoregressive distributed lag (ADL) model, one potential problem is that
the lack of power in the estimation may lead to the estimation of the coefficient for the lagged
dependent variable, even if the series is stationary, where the confidence interval includes 1.2

The calculation of the LRM in this model is lrmADL = β0+β1

1−α1

where the α1 term is the
coefficient on the lagged dependent variable. If the confidence interval for that term includes
1.0, then denominator of that LRM will include zero. In that case, the estimation of the
variance of the LRM will be “mildly explosive”3 (which is bad).

A second approach, the error correction model (ECM) does not tend have the same
problem. Existing measures of uncertainty for the LRM are typically calculated from an
ECM, which DeBoef and Keele (2008: 189-190) have shown can be written as mathemati-
cally equivalent to the ADL. The basic form of the ECM, analogous to the ADL model in
equation 1 is:

∆Yt = α0 + (α1−1)Yt−1 + β0∆Xt + (β0 + β1)Xt−1 + ǫt (2)

and the LRM is calculated as: LRMECM = β0+β1

α−1
.

The “mildly explosive” LRM problem for the coefficient estimate for lagged value of
Yt would be for it to include 1.0 in its confidence interval. Based on our examination of
the empirical time series literature in political science this does not seem to be a problem
for ECMs. These models, however, often face a different potential problem. Because the
LRM is calculated as the ratio of coefficients, the estimation of the error variances is more
complicated. The two common solutions are either the Bewley transformation or the delta

1Freeman (2016) provides a counter to this ubiquity of small T time series.
2One may suggest that if the confidence interval for α1 contains 1, then the researcher should not treat the

series as stationary. While this might seem like a reasonable suggestion, there may be cases where stationarity
is still appropriate for small samples. Undoubtedly, if a the coefficient on the lagged dependent variable is
not significantly different than 1, that series is unlikely to reject the null of a unit root in stationarity
tests. Researchers, however, often have more knowledge about the properties of their dependent variable
beyond the small set of observations used. Researchers who are limited by the timespan of their independent
variables, for instance, may have a series that is stationary with larger T than they can use in their analyses.
The small T also means that that the stationarity tests themselves are often weak.

3We borrow this phrase from Hill and Peng (2014, 293) and Hill, Li, and Peng (2016, 126).
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method. Both of these are easy to implement and provide asymptotically accurate estimates
of the variance in the LRM. But the small sample properties of these estimates are less clear
and may lead to inaccurate estimates of the variance of the LRM.

In this paper, we examine the effects of having a short series on the estimation of the
LRM in particular and suggest a simple fix that will provide more accurate estimates of
the uncertainty in the LRM. Specifically, we propose a straightforward Bayesian approach
to solve both of these potential difficulties. For the ADL models, this involves placing a
prior on the lagged dependent variable in an ADL model that constrains the coefficient
of the lagged dependent variable to be strictly between zero and one. This prior simply
incorporates the decision to treat the series as stationary and, as we will show, leads to
much more accurate estimates of the uncertainty in the LRM and the specification of the
ADL. ECMs do not seem to need this prior. But estimating the ECM via MCMC makes the
calculation of the variance of the ratio of coefficients straightforward and does not require
appeals to asymptotic theory.

In the next section, we discuss the general problem, outlining the main methods for
calculating the LRM and its uncertainty. We then present a series of Monte Carlos that
illustrate the problems with each of theses approaches and the improvements due to the
inclusion of a Beta prior on the lagged dependent variable in an ADL. Finally, we provide
two replications to illustrate how this approach can help with the estimates of the uncertainty
in the LRM.

2. UNCERTAINTY AND THE LRM

The notion that we should provide uncertainty estimates for estimated quantities of interest
should be obvious. This is standard practice for reporting results from statistical models.
For most cross sectional linear regression models, this is quite easy. The main quantity
of interest is captured by the coefficient estimates and their standard errors. Models with
limited dependent variables or interaction terms can be more complicated, but it is still
rare to see the reporting of some quantity of interest without the corresponding uncertainty
estimate.

In time series work, this is less common. If a long run relationship exists between two
variables, the regression coefficients do not directly capture the extent of how differences in
the independent variable correspond to differences in the dependent variable. Because the
effects are likely to accumulate over time, the better way to calculate the full effect of Xt

on Yt is to calculate the long run multiplier. In most time series specifications, the point
estimate is quite easy. It is simply the ratio of two coefficients. The more difficult part is
the calculation of the uncertainty around this point estimate.

In the literature there are three main approaches to calculating the calculating variance of
the LRM. As DeBoef and Keele (2008) note, neither the ADL nor the ECM provide a direct
estimate of the variance of LRM. Since the LRM is a ratio of coefficients, the calculation of
the variance of the ratio of coefficients with known variances can be used. The formula is:

V ar(
a

b
) = (

1

b2
)V ar(a) + (

a2

b4
)V ar(b)− 2(

a

b3
)Cov(a, b). (3)
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There are two common alternatives to this calculation. The first alternative calculation
of the LRM from an ECM is to use the Bewley (1979) transformation, which estimates the
variance of the LRM directly.4 The Bewley transformation is:

Yt = α0φ− α1φ∆Yt + φ(β0 + β1)Xt + φβ1∆Xt + φǫt (4)

where φ = ( 1

α1−1
) and an instrument for ∆Yt is calculated as the predicted values from the

equation ∆Yt = γ0 + γ1Yt−1 + γ2Xt + γ3∆Xt + ǫt. The LRM is the coefficient on Xt from
equation 3. The second approach is to use the delta method. The delta method relies on
expanding a random variable (in this case the LRM) via a Taylor series and calculating the
resulting asymptotic variance of this estimate.

In small samples, however, both of these techniques face difficulties. When T is small,
the estimate of α1 can be imprecise. Normally, this lack of power will simple lead to inflated
standard errors and not many other issues. In this case, however, there is an additional
potential pitfall. If the confidence interval of α1 includes 1, the variance calculation will be
“slightly explosive”. This can be seen in the calculation of the LRM. If the value of α1 has
probability mass at 1 the LRM is undefined for that point. If there is mass where α1 > 1,
the denominator will be negative. In each case, the calculation of the variance breaks down.

Our intuition is that the difficulty with the small sample variance estimates for the Bewley
method is partially responsible for Webb, Linn, and Lebo (2019) (hereafter, WLL) need for
stochastic simulations to calculate the bounds on their proposed LRM test for the presence of
the long run relationship. WLL demonstrate convincingly that a clear test of the presence on
long run relationship between Xt and Yt is captured by the significance of the LRM. As they
note “Thus, a nondegenerate, or valid, equilibrium relationship between yt and xt requires
the LRM to be nonzero” (p. 7, emphasis in original). This is a vitally important result.
They demonstrate that this is true regardless of the stationarity of yt, helping resolve much
of the uncertainty in pre-analysis specification tests of our time series. Additionally, because
the LRM is calculated separately for each of the independent variables, this approach allows
the researcher to know which of the variables have a significant long run relationship with
yt, while the ECM based tests only indicate that at least one independent variable has a
long run relationship.

Given the importance of the LRM for specification testing, WLL 2019 also empirically
explore the appropriate distribution of the test statistics for the LRM based on the Bewley
transformation. While the exact amount of information in the uncertainty estimates and the
critical values for the LRM depend on the sample size and the degree of autoregression yt and
xt, in general they find that the critical values do no follow a standard distribution. Instead,
they estimate these critical values via a stochastic simulation to determine the bounds of
the test. Their conclusion is that most empirical tests of the LRM are likely over confident
in the hypothesis tests. More importantly, they develop the bounds for the hypothesis tests
of the long run relationship. These bounds will guide a researcher to conclude that whether
or not there is a long run relationship.

This is a tremendous step forward for applied time series. What may be unsatisfying
for many researchers, however, is that the bounds have a relatively large range of middle

4The Bewley transformation is a computational convenience and is not a theoretical model.
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values that are inconclusive. For many empirical research questions, the conclusion may
end up with the unsatisfying result of a test statistic between the bounds and an uncertain
conclusion. This is the intellectually honest answer, but one we think will be frustrating for
many researchers. If an alternative estimation of the uncertainty in the LRM can provide a
more precise test of the significance of the LRM, this might be a more fruitful approach for
the applied researcher.

3. BAYESIAN APPROACH

Our approach to this problem is to use a Bayesian framework. This allows us to fully
integrate the stationarity of the dependent variable by adding a prior on the coefficient that
will constrain it to be strictly between 0 and 1. In the example presented here, we use the
prior such that α1 ∼ B(1, 1) to accomplish this. This is a diffuse prior that places equal
probability on all values between 0 and 1. A more informed prior, which places more weight
to values closer to 1 may be practical, but for this example we illustrate the influence of this
design with a flat prior.5

One way to think about this prior is that it is simply the formalization of stationarity.
When a researcher treats a series a stationary, she is assume that the root of the characteristic
equation of the time series is less than one. The use of this prior constrains the estimate of α1

to be less than 1, precisely the implication of treating the dependent variable as stationary.
The actual estimation of the model is carried out via a Markov chain Monte Carlo

(MCMC). This allows us to calculate the distribution of the posterior for all of the coefficients
directly. Rather than using an asymptotic equivalent to the confidence interval of the LRM
or relying on a formula that is not easily available in most statistical output, we can calculate
the LRM for each of the draws from the posterior in the MCMC and using this distribution
to summarize the credible region of the LRM.6 This is one of the virtues of inference from
the posterior of an MCMC. A researcher can estimate the distribution of functions (such
as ratios) of an unknown parameter or parameters directly from the posterior distribution
of the MCMC (Gelfand et al, 1990). As such, we do not need to rely on the asymptotic
properties of the variance estimator of the LRM and should provide more accurate estimates
of the credible region for the LRM than either the Bewley method or the Delta method.

At this point, this claim is little more than conjecture. In the next section we provide
some initial Monte Carlo evidence of this, but this is most likely not satisfying to the reader.
Our intended next step is to replicate the dynamic simulations of WLL 2019, but estimating
the distribution of the LRM via an MCMC approach instead of OLS.

4. MONTE CARLO ANALYSIS

To compare the properties of this approach versus the standard techniques, we conduct
two Monte Carlos. We generate data following an ADL(1,1;1). To explore the small sample

5If one has theoretical reasons to expect the coefficient on the lagged dependent variable to approach 1,
a Beta prior assuming a pmf massed near 1, such as B(5, 2), could be used. For the sake of demonstrating
the approach, however, we use B(1, 1), which will calculate a more conservative LRM.

6Implementing this approach can be easily accomplished in common statistical programs, such as R or
Stata.
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properties, we set T = 50. We generate the exogenous variable so that Xt = γXt−1+ηt where
γ = 0.5.7 We generate the endogenous variable so that Yt = α0+α1Yt−1+β0Xt+β1Xt−1+ ǫt
where α0 = 0, β0 = 0.5, and β1 = 0.25. ηt and ǫt are drawn from a standard normal
where cov(ηt, ǫt = 0). We vary α1 = {0.5, 0.9}. In the case where α1 = 0.5, the LRM is
0.5+0.25
1−0.5

= 1.5; when α1 = 0.5, the LRM is 0.5+0.25
1−0.9

= 7.5.
We estimate an ADL, ECM, and Bayesian ADL (B-ADL) model.8 Priors for the Bayesian

ADL are: βj ∼ N (0, 20), α0 ∼ N (0, 20), α1 ∼ B(1, 1), and ǫ ∼ G(1, 10). The Beta prior has
a uniform probability mass function (PMF) strictly between 0 and 1. Each Bayesian ADL
uses 10,000 MCMCs after a 2,500 burnin. Estimates are based on 250 simulations for each
value of α1.

5. RESULTS

Table 1 reports the results from the Monte Carlos. Each of the models recovers the expected
coefficients when α1 = 0.5. Moreover, the LRM is also correctly estimated by each of the
models. When α1 = 0.9, we again find that each of the models is able to recover the correct
coefficients. The LRM is the same for the ADL and ECM (both using the calculation of
the variance of the ratio of coefficients, or ECM-ratio, and the Bewley transformation, or
ECM-Bewley), while the B-ADL somewhat underestimates the LRM. The latter result stems
from the inclusion of the flat prior in the lower power context. Overall, each of the models
performs well in terms of bias.

Turning to the estimates of uncertainty, we find that the standard errors on the coefficients
are consistent across models for both α1 = 0.5 and α1 = 0.9. With small sample sizes, none
of the models indicate that β1 is statistically significant, even though it is a predictor of Yt in
the true data generating process. This is potentially problematic, as applied researchers often
disregard insignificant lags of independent variables, which would result in biased estimates
of the LRM.

Uncertainty estimates for the LRM differ substantially across models. Figure 1 report
the estimated standard errors for the B-ADL, ECM-ratio, and ECM-Bewley for α1 = 0.5 and
α1 = 0.9. When α1 = 0.5, the B-ADL model has a SE that over twice as large as the ECM-
ratio, and the ECM-ratio is almost twice as large as ECM-Bewley. The former is accounted
for by the influence of the prior given the small sample size. The latter result reflects the
fact that ECM-Bewley is an instrumental approach and thus tends to underestimate the
level of uncertainty in a small sample setting. The difference between the ECM-ratio and
ECM-Bewley techniques demonstrates that, while they recover the same asymptotic results,
they differ in small samples.

When α1 = 0.9, differences in the estimates of the SE are even more stark. SEs for the
LRM are approximately half the size of the coefficient for B-ADL, while the SEs for ADL
are over 5.5, reflecting the fact that ADL contains some simulations where the confidence
interval are “mildly explosive,” or greater than 1. Figure 2 makes this point more clear.
The prior on B-ADL forces estimates of the standard errors to remain within the range of

7The initial X is drawn from a standard normal distribution.
8The LRM for the B-ADL is calculated by recovering the median posterior. We also calculate the LRM

for the ECM using the Bewley transformation.

5



Table 1: B-ADL, ADL, ECM Estimates.

α1 = 0.5 α1 = 0.9
Variable B-ADL ADL ECM Variable B-ADL ADL ECM
Yt−1 0.46 0.46 -0.54 Yt−1 0.87 0.87 -0.13

(0.11) (0.11) (0.11) (0.05) (0.05) (0.05)
Xt 0.49 0.49 Xt 0.48 0.48

(0.17) (0.17) (0.17) (0.17)
Xt−1 0.28 0.28 0.77 Xt−1 0.29 0.28 0.77

(0.20) (0.19) (0.16) (0.17) (0.17) (0.13)
∆Xt 0.49 ∆Xt 0.48

(0.17) (0.17)
Const. 0.00 0.00 0.00 Const. 0.03 0.03 0.03

(0.15) (0.15) (0.15) (0.16) (0.16) (0.16)
LRM 1.47 1.47 1.47 LRM 7.08 7.29 7.29

(0.81) (0.29) (3.41) (5.53)
T 49 49 49 T 49 49 49

Note: Bewley LRM(βα1=0.5)=1.47, LRM(SEα1=0.5)=0.15 and Bew-
ley LRM(βα1=0.9)=7.29, LRM(SEα1=0.9)=0.39. B-ADL LRM: HDP
95%CIα1=0.5=[0.89, 2.20], HDP 95%CIα1=0.9=[2.27,32.02].

theoretically possible outcomes, whereas a non-insignificant proportion of the upper 95%
confidence intervals for ADL are greater than 1. In contrast, the SEs for ECM-Bewley are
much smaller than those of either the B-ADL or ADL models.

6. APPLICATIONS

We demonstrate the value of our approach with 3 applications. The first shows the potential
difficulty of calculating the variance estimate of the LRM from an ADL with a small sample

Figure 1: Standard Error on Long Run Multiplier
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Figure 2: Upper C.I. on Lagged DV when α1 = 0.9
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Note: 1 is the theoretical upper bound.

of mildly explosive error variance. The others apply our approach to the same applications
as WLL 2019.

6.1. Guns, Butter, and Deficits

Heo and Bohte 2012 examine the trade off between military expenditures, domestic spending,
and the role of deficits. While most of their emphasis is on the guns versus butter tradeoff,
they also demonstrate that increased defense spending is related to increased deficit spending.
It is this latter finding that we are exploring. We make this choice because it fits the profile
of the type of ADL model we highlight above. The specifications tests that Heo and Bohte
conduct indicate that the deficit spending measure is stationary and they analyze the data as
a straightforward model with a lagged dependent variable.9 The point estimate of the lagged
dependent variable in their results is 0.82. While the lagged dependent variable in a model
with an integrated series will have a downward bias, this is still far enough away from 1.0 to
probably not generate much skepticism. The difficulty is that with only 59 observations and
11 independent variables, the model has potentially inflated standard errors. The standard
error on the effect of the lagged dependent variable is 0.12, which means that the confidence
interval of the effect of the lagged dependent variable contains 1.0.

Table 2 presents the results from three models. The first is the results from the origi-
nal Heo and Bohte paper, which we can successfully replicate from their data available on
Dataverse. The second column presents the same model, but instead of estimating the full
seemingly unrelated regression model of all three equations, we estimate a simple ADL model.
In this design, the coefficient on the lagged dependent variable is substantively smaller, but
the standard errors are still large enough so that the confidence interval includes 1.0. The

9To be clear, they estimate a seemingly unrelated regression for three different models. The other two are
models with differenced dependent variables capturing the guns versus butter tradeoff. We have estimated
our application as a seemingly unrelated regression and reach similar conclusions, but this application is
more straightforward.
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Table 2: B-ADL, ADL, ECM Estimates.

Variable ADL (SUR) ADL B-ADL
Yt−1 0.82 0.75 0.82

(0.12) (0.14) (0.04)
∆(Milex/GDP) -0.42 -0.38 0.41

(0.12) (0.13) (0.04)
War -0.00 - 0.00 -0.00

(0.00) (0.00) (0.00)
∆ GDPt−1 0.36 0.34 0.36

(0.05) (0.06) (0.03)
∆ Unemploymentt−1 0.00 -0.00 -0.00

(0.00) (0.00) (0.00)
Inflation 0.00 0.00 0.00

(0.00) (0.00) (0.00)
DPresRCongt−1 0.00 0.01 0.00

(0.00) (0.01) (0.00)
RPresDCongt−1 0.00 -0.00 -0.00

(0.00) (0.00) (0.00)
RPresSplitCongt−1 -0.01 -0.01 -0.01

(0.00) (0.00) (0.00)
∆Congresst−1 0.00 0.00 0.00

(0.00) (0.00) (0.00)
∆ (Debt/GDP)t−1 0.07 0.04 0.07

(0.05) (0.06) (0.03)
Const. -0.01 0.00 -0.01

(0.003) (0.03) (0.00)
LRM δ(Milex/GDP) -2.34 -1.70 -2.30

(1.68) (1.13) (0.70)
T 59 59 59

third column estimates the Bayesian ADL. At the bottom of the table, we report the LRM
and its standard error (calculated via the delta method) for the change in the ratio of mil-
itary expenditures to the GDP, which is the key independent variable in Heo and Bohte’s
discussion.

The results in the first two columns are substantively consistent. In both cases, the
coefficient on the change in the ratio of military expenditures to the GDP is significant, with
a t-statistic of greater than 3.5. The LRM for this coefficient, however, is not statistically
significant in either the seemingly unrelated regression model or the standard ADL. If the
LRM is the key calculation of how changes in the independent variable accumulate in the
dependent variable, the implication is that there is not much of an effect.10

The B-ADL model, however, has a very different conclusion. First, the standard errors

10Tests of the significance of the LRM for the other variables in the model all also fail to reject the null
hypothesis.
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are smaller in the MCMC based model than in either of the frequentist models. This is not
surprising since MCMC models are often more efficient with small samples (McNeish:2016).
More importantly, the confidence region of the LRM clearly excludes zero, leading to the
conclusion that there is a reliable long run relationship between the change in the ratio of
military expenditures to the GDP and the size of the deficit.

6.2. Replications from Webb, Linn, and Lebo (2019)

In this section, we replicate the models that WLL 2019 use in their article. The first of
these focuses on public policy mood (Stimson, 1998) and the second addresses presidential
success in Congress. In each case, the authors take standard models in the literature and
use their bounds approach to reach conclusions about the long run relationships between
several standard independent variables and the series of interest. They find mixed evidence
with many of the tests being inconclusive about the presence of a long run relationship.
Our approach has the potential to provide a clearer test without this indeterminate range of
results.

Public policy mood has become the dominant measure of the American public’s prefer-
ences for a more or less expansive role from the federal government. The measure itself relies
on a large number of individual survey items and uses the dyadic ratio algorithm to find the
common over time variance in the individual measures. Mood helps explain election out-
comes and movement in government policy (Erikson, Mackuen, and Stimson, 2002). Given
its prominent role in understanding American politics, it is no surprise that there has been a
lot of attention to understanding its predictors. The specific replication that WLL examine
is the work of Ferguson, Kellstedt, and Linn (2013). They model public policy mood as a
quarterly series with an ECM predicted by inflation, unemployment, and policy outcomes.

Table 3 presents the results reported by WLL and Table 4 presents our reanalysis. The
results in Table 3 are exactly the same as the ones reported by WLL. The coefficient estimates
for the MCMC model are approximately the same, with minor deviations due to the sampling
variably in the MCMC approach. The point estimates of the LRM are also essentially the
same in the two models. The main difference, however, is in the conclusions reached based
on the uncertainty in the estimate of the LRM. For WLL, there is only a conclusive result
for one of the three independent variables. Their results are inconclusive about the LRR
that inflation and policy outcomes have with policy mood. Our results, in contrast, provide
evidence that while there are no LRRs with either of the economic predictors, there is a
LRR between policy output and policy mood. In this case, the more conclusive results from
the MCMC approach lead to conclusions where the bounds approach is inconclusive.

The second application in WLL is a model predicting presidential success in Congress.
The dependent variable in this model is the percentage of times in a year the president
was successful in the House of Representatives when he took a public position. The model
includes an index of conditional party government, the president’s party seat share and
presidential approval as independent variables. As with the model explaining public policy
mood, we are able to accurately replicate the WLL results. Based on their bound approach,
the results indicate that there is a LRR between the president’s party share of the House
and the president’s success rate. The results for the effect of conditional party government
are inconclusive and the results for the effect of presidential approval suggest that there is
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Table 3: Replication of WLL model of domestic policy mood

Variable Lagged value Differenced LRM LRM t-statistic
Policy Mood -0.23

(0.05)
Inflation -0.12 -0.12 -0.52 -1.96

(0.07) (0.21) (0.27) (Between)
Unemployment -0.08 0.91 -0.36 -0.78

(0.10) (0.48) (0.47) (Below)
Policy Outcome -0.10 -0.17 -0.45 -2.23

(0.05) (0.21) (0.20) (Between)
Vietnam wart−1 1.81

(0.65)
Constant 19.37

(4.20)
R2 0.11
T 168

Note: All of the result of the LRMs are equivalently estimated via the
Bewley method and the delta method. Standard errors in parenthesis.
The determination of the LRMs t-statistics is based on the dynamic
simulation results reported by WLL (2019).

no LRR between approval and the success rate.
The Bayesian model leads to slightly different conclusions, however. Consistent with the

bounds approach we find that here is a LRR with House share and success and no LRR with
approval and success. The difference is with the effect of conditional party government. Our
results show that the credible region for the LRM of conditional party government excludes
zero. In fact, less than 0.7% of the draws from the posterior of that LRM are negative. Our
results suggest that the inference from the posterior distribution of the LRM of conditional
party government indicates that there is an LRR.

7. CONCLUSION

We are not entirely confident in this approach. We think the theoretical motivation of WLL
is an impressive one. If they are correct, then the hypothesis test of an LRM will directly
test the LRR between the independent variable and the dependent variable, regardless of
the specifics of the stationarity of the variables. As we noted above, this is an important
insight that we think moves the applied testing of time series forward tremendously. The
one shortcoming, we think, is the use of the Bewley transformation for this hypothesis test.
We believe that the MCMC approach gives a more accurate estimate of the uncertainty of
the LRM than the Bewley transformation, which relies on asymptotic theory. Our Monte
Carlo evidence is suggestive of this, but nowhere near definitive. The obvious next step that
we have no implemented yet is to replicate the dynamic simulations of WLL but using our

10



Table 4: MCMC model of domestic policy mood

Variable Lagged value Differenced LRM LRM Credible Region
Policy Mood -0.23

(0.05)
Inflation -0.12 -0.12 -0.52 (-1.11, 0.06)

(0.07) (0.21)
Unemployment -0.08 0.93 -0.36 (-1.51, 0.54)

(0.10) (0.49)
Policy Outcome -0.10 -0.17 -0.45 (-0.93, -0.06)

(0.05) (0.20)
Vietnam wart−1 1.80

(0.65)
Constant 19.35

(4.17)
T 168

Note: Results from an MCMC model with a burn in of 20,000. The coef-
ficients report the mean of the posterior distribution with 10,000 samples.
The standard deviation of the parameter estimates in parenthesis. The LRM
is calculated from the distribution of the ratio of the coefficient for the dif-
ferenced term divided by -1 multiplied by the coefficient on the lagged de-
pendent variable. The credible region for the LRM reports the 95% credible
region.

Table 5: Replication of WLL model of presidential success

Variable Lagged value Differenced LRM LRM t-statistic
Presidential success -0.58

(0.12)
Conditional party government 7.51 11.14 12.96 3.17

(2.90) (2.76) (4.08) (Between)
President’s party house share 1.35 1.96 2.33 5.38

(0.38) (0.27) (0.43) (Beyond)
Presidential approval 0.09 0.30 0.15 0.53

(0.17) (0.18) (0.29) (Below)
Constant -34.77

(18.56)
R2 0.61
T 54

Note: All of the result of the LRMs are equivalently estimated via the Bewley method
and the delta method. Standard errors in parenthesis. The determination of the
LRMs t-statistics is based on the dynamic simulation results reported byWLL (2019).
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Table 6: MCMC model of presidential success

Variable Lagged value Differenced LRM LRM Credible Region
Presidential success -0.58

(0.13)
Conditional party government 7.51 11.17 12.96 (3.73, 22.01)

(2.94) (2.81)
President’s party house share 1.35 1.96 2.33 (1.38, 3.30)

(0.39) (0.28)
Presidential approval 0.09 0.30 0.15 (-0.53, 0.74)

(0.17) (0.19)
Constant -34.87

(18.85)
T 54

Note: Results from an MCMC model with a burn in of 20,000. The coefficients report
the mean of the posterior distribution with 10,000 samples. The standard deviation of the
parameter estimates in parenthesis. The LRM is calculated from the distribution of the
ratio of the coefficient for the differenced term divided by -1 multiplied by the coefficient on
the lagged dependent variable. The credible region for the LRM reports the 95% credible
region.

model instead. The properties of the Gibbs Sampler and MCMC models implies that we
should get accurate estimates of the uncertainty in the estimate, but this is empirical and
testable.

Our results demonstrate that when the coefficient on the lagged DV is moderate to
small, each approach is able to recover correct parameter estimates, including for the LRM.
When the coefficient on the lagged DV is large, however, B-ADL is preferable, as it is the
only approach that provides theoretically appropriate estimates of the uncertainty on the
LRM; ECM-ratio suffers from “explosive” SEs and ECM-Bewley underestimates the degree
of uncertainty when sample sizes are small.

In addition, the results reveal that, in small samples, analysts may underestimate the
LRM because the coefficient for Xt−1 is not statistically significant in any of the models
at either value of α. This suggests that applied researchers should be especially careful
when selecting the lag structure of the independent variables, as the coefficients on such
variables may be incorrectly identified as lacking statistical significance owing to low power.
Discarding such variables, of course, would lead to inaccurate estimates of the LRM.
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