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Abstract: Strategic interactions among rational, self-interested actors are commonly

theorized in the behavioral, economic, and social sciences. The theorized strategic

processes have traditionally been modeled with multi-stage structural estimators,

which improve parameter estimates at one stage by using the information from

other stages. Multi-stage approaches, however, impose rather strict demands on

data availability: data must be available for the actions of each strategic actor at

every stage of the interaction. Observational data are not always structured in a

manner that is conducive to these approaches. Moreover, the theorized strategic

process implies that these data are missing not at random. In this paper, I derive

a strategic logistic regression model with partial observability that probabilistically

estimates unobserved actor choices related to earlier stages of strategic interactions.

I compare the estimator to traditional logit and split-population logit estimators

using Monte Carlo simulations and a substantive example of the strategic firm–

regulator interaction associated with pollution and environmental sanctions.

Key words and phrases: Data missing not at random, partial observability, strategic

choice models.

1. Introduction

Strategic interactions among rational, self-interested actors are of interest

in the behavioral, economic, and social sciences. Commonly one assumes that

each actor anticipates the expected action of other actors in order to choose its

own best response. An important empirical implication of strategic interactions

is that observable data are missing not at random (MNAR) (Signorino (1999,

2003); Signorino and Yilmaz (2003); Nieman (2015)). Consider, for example, the

modeling of a defender’s ability to deter an attack on a protégé (Schelling (1960);

Zagare and Kilgour (2000)). Successful deterrence is one possible outcome of a

strategic interaction between the defender and the attacker. The likelihood that

an attacker invades the protégé is determined, in part, by whether it expects the

defender to intervene. Strategic models are a common approach for statistically

modeling these type of interactions.
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Strategic models provide a statistical theory of normal and extensive form

non-cooperative games (McKelvey and Palfrey (1995, 1996, 1998)). The model

assumes that actors choose strategies based on relative expected utility, and that

other actors do as well. Strategic models build on random utility assumptions

(e.g., McFadden (1974, 1976)), where an error term represents that (1) actor i fol-

lows a “bounded rationality” logic, in that, while generally correct, it sometimes

errs when implementing its own actions or misperceives the other actor’s utility,

or (2) actor i has private information (Signorino (1999, 2003)). Each approach

is consistent with perfect Bayesian equilibrium (PBE), a Nash-based equilibira

concept common in rational choice models (McKelvey and Palfrey (1995, 1998)).

Strategic models identify equilibria probabilities for actor actions at each

information set in a game. McKelvey and Palfrey (1995, 1996, 1998) originally

developed the approach to explain variation in subject responses in experimental

settings. Signorino (1999) extended this to estimate coefficient parameters rather

than the variance. In either case, covariates are specified at each information set,

and the predicted probabilities from later stages are used to inform and condition

estimates at earlier stages to account for the theorized strategic process. This

process is similar to some imputation based approaches (e.g., Boehmke (2003);

Liu et al. (2013)) which use the estimates from one equation to construct la-

tent measures for censored cases. Strategic models differ from both traditional

nonignorable selection models (e.g., Heckman (1979); Sartori (2003)) and auxil-

iary/imputation based approaches in that strategic models are designed for sit-

uations in which two or more actors are in a non-cooperative setting. Strategic

models treat an actor’s choice in an earlier stage of the interaction as a function

of both its own expected behavior and the expected behavior of the other actor

in a later stage.

A drawback to this approach is that strategic models require data be avail-

able for each actor at each information set of the game (Signorino and Yilmaz

(2003, pp.556–557); Nieman (2015)), but observational data often fail to meet

this condition. Instead, data are often available only for the outcome of an in-

teraction, with little or no data on the individual actor actions that lead to the

observed outcome. This means that observational data are only partially ob-

served, since they are the result of unobserved joint decisions of multiple actors,

rather than those of a single decision-maker (Poirier (1980)). Moreover, the theo-

rized strategic process implies that data reflecting the unobserved joint decisions

are characterized by non-random missingness.

Figure 1 presents an example of the theoretical interaction between a firm and
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Figure 1. Interaction between firm and the environmental protection agency.

the environmental protection agency (EPA). Assume that the firm is interested

in maximizing its profits for producing widgets, but in the course of doing so

generates waste. The firm is presented with two choices: it can either stay within

its regulated guidelines of waste production (¬P ), or it can exceed regulations

and pollute illegally (P ). If the firm chooses ¬P , then the game ends with the

outcome No Pollution. If the firm chooses P , then the EPA will either detect

the violation and issue a sanction (S), resulting in the outcome Sanction, or

fail to detect the violation and not sanction (¬S), leading to the outcome Not

Detected. Observational data, however, contains only information on whether the

interaction resulted in a sanction, but not the individual actions. The number in

parentheses indicates how observational data would code each outcome.

Observational data combines two of the outcomes—No Pollution and Not

Detected—and treats them as non-events (0s), while treating the other outcome—

Sanction—as the observed event (1s). It is unlikely that unsanctioned, noncom-

pliant firms are randomly distributed; rather, firms may intentionally exceed pol-

lution standards when they believe that the EPA is less likely to sanction them,

meaning data for a firm’s actions are MNAR. Moreover, additional data collec-

tion would not resolve the nonrandom missingness problem: firms that pollute

and evade EPA sanctions are unlikely to volunteer accurate information regard-

ing their noncompliance with EPA standards. Ignoring the underlying strategic

process and simply treating the data as binary when estimating predictors of

noncompliance may lead to incorrect inferences regarding whether decreases in

the number of sanctions indicates that noncompliance is decreasing or whether

firms are increasingly evading detection.

In remainder of the paper, I derive a statistical solution to the theoretical

puzzles driven by the limitations in many datasets by extending the strategic

model to cases of partial observation. The estimator outperforms both tradi-

tional and binary choice mixture models in a set of Monte Carlo simulations.

Finally, I apply the estimator to the firm-level data regarding compliance with
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Figure 2. Strategic interaction with agent error.

environmental regulations from Konisky and Teodoro (2015).

2. A Strategic Model with Agent Error

A strategic discrete choice model where errors enter at information sets—

agent error—is depicted in Figure 2. The game has two actors, [A, B], four

actions [L, R, `, r], and three possible outcomes, [Y1, Y2, or Y3]. The actors

move sequentially, with A moving first. If actor A chooses L, the game ends with

Y1. If actor A chooses R, then actor B selects between ` and r. If actor B chooses

`, the game ends with Y2. If actor B chooses r, the game ends with Y3.

The utilities displayed under the terminal node reflect the actions of each

actor, so that U∗ij = Uij +αij , where U∗ij is the true utility, i is the actor, j is the

action, U is the observable utility (that is known by both actors and the analyst),

α represents agent error associated with the action, and the value in parentheses

is the outcome. Actor i knows the value of α, but actor ¬i (and the analyst) only

know its distribution. Each actor chooses the action where U∗ij > U∗i¬j . Since

the model is sequential, actor A must take into account the expected action of

actor B in order to maximize its own utility. Thus, the game is solved by working

backwards up the game tree.

If actor A chooses R, then actor B’s utilities for selecting ` and r are

U∗BR`
= UB`

+ αB`
, (2.1)

U∗BRr
= UBr

+ αBr
. (2.2)

Since the analyst and actor ¬i know only the distribution of αij , they only

have probabilistic estimates of i’s choice. If we assume that αij are i.i.d. type I

extreme value, the resulting choice probabilities for actor B have the logistic

distributions

p` =
eUB`

eUB` + eUBr

, (2.3)
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pr =
eUBr

eUB` + eUBr

. (2.4)

Actor A must account for actor B’s choices in order to calculate actor A’s

own utility. To do this, actor A conditions its own utilities by whether it expects

actor B to choose ` or r. That is, actor A must calculate its expected utility

and does so based on the observable portion of actor B’s utility and the known

distributions of αBj
, which are the choice probabilities from (2.3) and (2.4). Actor

A’s utilities for selecting L and R are

U∗AL
= UAL

+ αAL
, (2.5)

U∗AR
= UAR

+ αAR
. (2.6)

Inserting the probability of each of actor B’s choices from (2.3) and (2.4) in order

to calculate the expected value for UAR
in (2.6) yields:

EU∗AR
= p`UAR`

+ prUARr
+ αAR

. (2.7)

The resulting choice probabilities for actor A, from the analyst’s vantage,

are

pL =
eUAL

eUAL + eEUAR

, (2.8)

pR =
eEUAR

eUAL + eEUAR

. (2.9)

Equations (2.8) and (2.9) differ from a traditional logit model as they account for

the expected utility calculations of actor A, the endogeneity of strategic decision-

making from (bounded) rational actors.

The probabilities for each outcome Y1, Y2, and Y3 are simply the product of

the choice probabilities following the sequence of the game in Figure 2

pY1
= pL, (2.10)

pY2
= pRp`, (2.11)

pY3
= pRpr. (2.12)

These outcome probabilities are the equilibria outcomes of the game.

The observable utilities Uij can be specified as a set of regressors, such that

Uij = Xijβij . In order for the model to be identified, the same variable cannot be

specified for all j (Lewis and Schultz (2003)). The uncertainty introduced by each

actor action allows us to directly estimate the theoretical model using maximum

likelihood. Assuming there are data for each actor decision and regressors for

the utilities, parameters are recovered by maximizing the likelihood function
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L =

n∏
i=1

P(Y1,i = 1)y1,iP(Y2,i = 1)y2,iP(Y3,i = 1)y3,i . (2.13)

3. A Strategic Model with Partial Observability

Data on actor decisions are frequently not available. In the absence of such

data, one often employs conventional binary choice models, such as a logistic

regression, using a first order βijXij specification. This specification ignores the

endogenous and conditional choices made by strategic actors. Even the use of

a mixture model, such as an endogenous switching or split-sample (e.g., zero-

inflated) logit (Miranda and Rabe-Hesketh (2005); Greene (2010)), while helping

to account for the two distinct processes leading to outcomes coded as 0, fails to

model the strategic interaction depicted in Figure 2.

To address these data concerns, the likelihood in (2.13) can be re-written as

L =

n∏
i=1

P(Yi = 1)yiP(Yi = 0)1−yi , (3.1)

where

P(Yi = 1) = pRpr, (3.2)

P(Yi = 0) = 1− pR + pR(1− pr) = 1− pRpr. (3.3)

The likelihood captures the theorized strategic interaction between actors A and

B. The random variable Y = 1 when both actions R and r occur. Equation (3.2)

is the probability of observing Y = 1 in the data. The random variable Y = 0

when when either action L or actions R and ` occur. These events are pooled in

(3.3) and are separated probabilistically using the observed portion of the utility.

4. Monte Carlo Analysis

I analyze the ability of the strategic logistic model with partial observability

(SLPO) to recover parameter estimates using Monte Carlo simulations based on

a data generating process (DGP) that assumes a strategic interaction between

two actors, as shown in Figure 2. I compare the estimates to those from two other

models that are commonly used when estimating theorized strategic interactions

between (boundedly) rational actors: the split-sample logit (SSL) and the tradi-

tional logit. As the data are simulated and we know the actual parameter values,

I also estimate a full information strategic logit to assess the loss of efficiency

between the full information and partially observed models when data on actor
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actions are missing.

Assume the DGP

Ytrue =


Y1 if U∗AL

≥ U∗AR
,

Y2 if U∗AR
> U∗AL

and U∗BR`
≥ U∗BRr

,

Y3 if U∗AR
> U∗AL

and U∗BRr
> U∗BR`

where, from the perspective of actor A and the analyst,

U∗BR`
= XB`

βB`
+ αB`

, (4.1)

U∗BRr
= XBr

βBr
+XcβBrc

+ αBr
, (4.2)

and from the perspective of the analyst,

U∗AL
= XAL

βAL
+ αAL

, (4.3)

U∗AR
= p`XAR`

βAR`
+ pr(XARr

βARr
+XcβARrc

) + αAR
, (4.4)

with p` = exp
(
U∗BR`

)
/
{

1 + exp
(
U∗BR`

)}
and pr = exp

(
U∗BRr

)
/
{

1 + exp
(
U∗BRr

)}
.

Consistent with random utility assumptions, I normalize βAR`
= βB`

= 0. I set

βAL
= βARr

βARrc
= βBr

= βBrc
= 1. Fixed variables XAL

, XARr
, XBr

, and Xc are

uniformally distributed [−2, 2]. The inclusion of Xc, a regressor that is common

to both actors, makes the simulations more realistic to applied research. The αij

are i.i.d. type I extreme value, and the resulting choice probabilities following

logistic distributions. I ran 1,000 simulations with 2,000 observations each. All

estimates were performed using Stata 14 statistical software.

I recoded the random variable Ytrue into a binary variable, to reflect the situ-

ation where data on individual actor actions are missing, and the data only report

whether actors A and B choose a specific joint outcome, but other outcomes are

not distinguishable, so

Ymiss =

{
1 if Ytrue = Y3,

0 otherwise.

Ymiss is treated as the random variable for each of the SLPO, SSL, and

traditional logit models. SLPO is specified consistent with the DGP and adheres

to the likelihood in (3.1).

SSL is a mixture model where the random variable is a function of two

processes, such that

P (Ymiss = 1) = SL, (4.5)

P (Ymiss = 0) = (1− S) + S(1− L), (4.6)

where S and L are logistic cumulative density functions. S is specified as S =
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exp (S∗)/{1 + exp (S∗)} where

S∗ = X ′AL
βAL

+XcβARrc
+ ε1, (4.7)

and L is specified as L = exp (L∗)/{1 + exp (L∗)} where

L∗ = XARr
βARr

+XBr
βBr

+XcβBrc
+ ε2, (4.8)

and the εi follow logistic distributions. Equation (4.7) represents the “selection”

equation and (4.8) represents the traditional logit equation.

The traditional logit is specified as

Y ∗miss = X ′AL
βAL

+XARr
βARr

+XBr
βBr

+XcβBrc
+ ε, (4.9)

where ε follows a logistic distribution, and Ymiss = 1 if Y ∗miss > 0 and 0 otherwise.

The full information strategic logit (FISL) used all of the data from the

DGP, treating Ytrue as the random variable. The FISL was estimated using the

likelihood in (2.13).

Figure 3 provides a visual display of the parameter estimates from the FISL

(thin solid line), SLPO (thick solid line), SSL (dashed line), and traditional

logit (dash dot line). Both of the strategic models are able to capture the true

parameter estimates, while the split-sample model is able to capture parameters

associated with actor B’s utility, but not those associated with actor A, and

the traditional logit produces only biased parameter estimates. The difference

between the strategic models and SSL reflects the conditional nature of actor

A’s actions, which SSL does not account for. As one would expect, when more

information is available, FISL produces more efficient estimates than SLPO, as

indicated by the taller densities.

Table 1 reports the estimated coefficients, standard errors, and root mean

squared error (RMSE) from the Monte Carlos. The strategic models are able

to approximate the true values for the parameters. SLPO recovers slightly less

biased estimates of the first stage coefficients than FISL, but is less efficient for

both first and second stage estimates in terms of RMSE. The slight conservative

bias associated with FISL stems from the greater precision of the second stage

estimates, which carries through the predicted probabilities that condition the

estimated coefficients in the first stage (Leeman (2014)). Comparing SLPO to

SSL, the former outperforms the latter, especially when estimating coefficients

associated with actor A, whose actions are conditioned by the expected actions of

actor B. SSL is able to recover unbiased estimates of coefficients associated with

actor B’s actions, but is less efficient than SLPO. The traditional logit recovers

biased estimates of all coefficients.
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Figure 3. Kernel densities of estimated coefficients.

I compare model fit statistics for the three binary choice models (SLPO,

SSL, logit) in Table 2. Since the models are non-nested in terms of their func-

tional form, I used Clarke’s distribution-free test and the Vuong test. Clarke’s

distribution-free test is informed by the median logged ratio of the likelihood for

the individual observations of two empirical models (Clarke (2007)). If the first

model is closer to the true specification, then the median logged ratio of the two

likelihoods is positive. If the second model is closer to the true specification, then

the ratio is negative. More formally,

H0 : Pr0

{
ln
f (Yi|Xi;β∗)

g (Yi|Zi; γ∗)
> 0

}
= 0.5, (4.10)

where the numerator is the estimated model f that predicts Yi from a set of

covariates, Xi, and estimated parameters, β∗; the denominator is the estimated

model g, that predicts Yi from a set of covariates, Zi, and estimated parameters,

γ∗. The null hypothesis is that the median logged ratio of the likelihoods between

the two models is equal to 0. If di is set equal to lnf (Yi|Xi;β∗)− lng (Yi|Zi; γ∗),

the test statistic is

B =

n∑
i=1

I(0,+∞) (di), (4.11)
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Table 1. Comparison of estimated coefficient, standard error, and root mean squared
error.

Estimates FISL SLPO SSL Logit
βAL

0.942 0.966 0.679 0.329
SE 0.043 0.085 0.055 0.026
RMSE 0.218 0.305 0.399 0.691
βARr

0.885 1.002 0.353 0.275
SE 0.061 0.099 0.054 0.026
RMSE 0.279 0.330 0.688 0.742
βARrc

0.882 0.976 0.559 —
SE 0.062 0.105 0.059 —
RMSE 0.281 0.341 0.505 —
βBr

0.984 0.999 0.976 0.344
SE 0.064 0.079 0.094 0.027
RMSE 0.261 0.292 0.321 0.676
βBrc

1.041 1.054 0.963 0.578
SE 0.645 0.083 0.102 0.030
RMSE 0.265 0.304 0.337 0.456

Note: The RMSE =
√

Bias2 + Variance. Because the traditional probit
is a single equation model, it estimates only one parameter for Xc, which
is displayed with βBrc

.

where I is a dichotomous indicator equal to 1 if ni > 0 in (4.10), and 0 if ni ≤ 0.

Equation (4.11) is the sum of positive differences and is a Binomial distribution

with n trials and a mean equal to 0.5.

The Vuong test compares the mean log-likelihood ratios of two models. If

the first model is closer to the true specification, then the mean log-likelihood

ratio is positive and statistically significant, similarly, the second model. As is

common practice, I use Schwarz’s correction to the Vuong test

LRn

(
θ̃n, γ̃n

)
−
{(p

2

)
lnn−

(q
2

)
lnn

}
, (4.12)

where LR is the log-likelihood ratio, θ̃ and γ̃ are the model estimates, and p and

q are the number of estimated parameters for model f and g, the two models

being compared (Vuong (1989)). I also assessed in-sample goodness of fit by

comparing correctly predicted and false positive rates across models.

Table 2 demonstrates that the various model fit statistics identify SLPO as

the best fit to the strategic DGP. Both the Clarke and the Vuong tests indicate

that SLPO reflects the DGP better than SSL and traditional logit; we can re-

ject the null hypothesis that either SSL or logit models are equal to SLPO, as

the p-value for each comparison is less than 0.001 using either test. SLPO is



STRATEGIC MODELS WITH PARTIAL OBSERVABILITY 2099

Table 2. Comparison of average model fit with a strategic data generating process.

SLPO SSL Logit
Clarke Test∑n

i llSLPO,i − llalternative,i > 0 — 1,191.254 1,622.903
Positive, 1-side test (p-value) — < 0.001 < 0.001
Negative, 1-side test (p-value) — > 0.999 > 0.999
Equal, 2-side test (p-value) — < 0.001 < 0.001
Vuong Test
Vuong — 94.595 374.007
SE — 1.385 1.120
t-statistic — 73.460 336.481
p-value — < 0.001 < 0.001
In-sample Predictions
% predicted Y1 (True = 44.7%) 45.5 52.1 —
% predicted Y2 (True = 24.5%) 23.4 16.1 —
% predicted Y3 (True = 30.8%) 31.0 31.8 50.5
% of Obs. Correctly Classified Ytrue 78.5 70.8 —
% of Obs. Correct Classified Ymiss 87.3 83.8 67.4

% of Obs. Correct if Ŷmiss = 1|Ymiss = 1 79.9 75.5 79.2

% False Positive (Ŷmiss = 1|Ymiss = 0) 9.3 12.4 37.8

% Correctly Predicted Unobserved (Ŷ2|Ytrue = Y2) 67.9 67.9 —

able to identify the true outcomes, an important consideration when calculating

predicted values. Both SLPO and SSL are able to correctly classify over 80% of

cases with binary outcomes, while logit correctly classifies less than 70% of such

cases. SLPO has a higher rate of correctly identifying cases where Ymiss = 1 than

SSL, and a lower rate of false positives. Logit is able to correctly identify cases

where Ymiss = 1 at approximately the same rate as SLPO, but it does so with a

higher rate of false positives. Both SLPO and SSL are able to correctly identify

separate the two types of 0 cases in Ymiss data.

These differences between SLPO, SSL, and traditional logit have ramifica-

tions when testing rational choice model using aggregated data that is missing

information about individual actor choices. Estimates using SSL are downward

biased on actions associated with actor A. The effect of this is that while in-

ferences related to the direction of an effect may be correct, any subsequent

substantive effects estimated from the model are not. Turning to the traditional

logit, it is unable to isolate the effects of Xc for each actor. On balance, SLPO

is the model best able to capture rational choice theories.
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5. Application

I apply SLPO to the example discussed in the introduction of firm compli-

ance with EPA regulations. In particular, I use data from Konisky and Teodoro

(2015) to explore the determinants of compliance with the Clean Air Act (CAA)

for 54,206 US firms during the period 2000–2011. Firms are coded as noncom-

pliant when they (1) violate the CAA and (2) are detected by the EPA (or state

regulators). Firms that either follow the standards set in the CAA, or that the

EPA fail to detect, are both coded the same in that they have not been found to

be noncompliant with environmental regulations.

Firms are expected to follow a “calculated motivation” (e.g., Winter and

May (2001); Konisky and Teodoro (2015)) in that they act as rational decision-

makers who comply with regulations if the net cost of doing so is less than the net

cost of noncompliance. The interaction of firms and regulators is strategic in that

firms are more likely to adhere to CAA standards when they expect regulators

to identify firms that violate the law, and are less likely to meet CAA standards

otherwise. Regulators, meanwhile, have limited budgets, and detecting violations

and issuing sanctions is costly. Regulators must therefor prioritize inspections

for some locations as the expense of others. The result of the firm–regulator

interaction is the same as that depicted in Figure 1, where firms are treated as

the first actor and the EPA (and state regulators) as the second actor.

The random variable, noncompliance, is a binary variable equal to 1 if a firm

is officially sanctioned by the EPA or state regulators, and 0 otherwise. Approx-

imately 9% of observations are coded as noncompliant in the sample. I specify

a firm’s utility for the action to stay within CAA regulations (U∗F¬P
) with the

binary variable major air source, which captures firm size and is coded 1 if a

stationary source emits pollutants above a certain threshold (approximately 100

tons/year of air pollutants, 10 tons/year of a single hazardous air pollutant, or 25

tons/year of combined hazardous air pollutants). Given their more complex reg-

ulations, the parameter for major air source is expected to be negative. I include

several county-level demographic and economic characteristics to represent the

utility a firm receives from acting to run afoul of CAA regulations (U∗FP
). The

percent of the population that is African American or Hispanic are expected to

be associated with a reduction in a firm’s utility to comply with the CAA, higher

median household incomes should increase compliance, and higher poverty and

unemployment rates should decrease compliance. Finally, I control for whether

a firm was identified as a noncomplier in the previous year. The expected utility

for U∗FP
, of course, accounts for the expected actions of the EPA.
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Table 3. Summary statistics.

Variable Mean Std. Dev. Min. Max. Obs.
Noncompliance 0.090 0.286 0 1 650,472
Major Air Source 0.305 0.460 0 1 650,472
Percent African American 11.905 14.062 0 86.489 650,472
Percent Hispanic 9.601 12.136 0.094 97.539 650,472
Poverty Rate 14.850 5.509 2.117 50.888 650,472
Unemployment Rate 6.117 2.612 1.1 29.700 650,472
Median Household Income 45,055.472 11,782.858 16,271 119,075 650,472
Public 0.050 0.217 0 1 650,472

Finally, I include several variables to capture the utility for regulators to

detect and sanction noncompliant firms (U∗ES
). Public-sector firms can use polit-

ical back channels to pressure regulators and evade sanctions. Public is a binary

variable coded as 1 if a firm is publicly owned. I also include country-level de-

mographic and economic characteristics. Higher rates of minorities, poverty, and

unemployment are expected to be associated with lower probabilities of sanc-

tioning noncompliant firms, while higher median household incomes may lead to

higher probabilities of sanctioning noncompliant firms. Descriptive statistics of

each variable are reported in Table 3.

Table 4 presents the results from a SLPO and logit. I compare estimates

from the SLPO to a traditional logit model, as either logit or probit are typically

used in applied work with binary dependent variables. The models differ in

that logit treats the random variable as an additive function that combines the

theorized causal mechanisms attributed to a variable for each actor, while SLPO

models it as a strategic interaction and can isolate casual mechanisms attributed

to different actors by placing the same variable in multiple equations associated

with different actors.

The results between the two models differ in a number of ways. The logit

model identifies percent African American, percent Hispanic, and poverty rate as

statistically significant predictors of noncompliance, with the two former having

positive coefficients and the latter a negative coefficient. SLPO provides a more

nuanced interpretation: the increase in noncompliance associated with increases

in percent African American from the logit model is attributed to a lack of

deterrence, as the coefficient is negatively associated with the EPA’s utility for

sanctioning. Percent Hispanic has a positive coefficient in the equation for a

firm’s utility for polluting and a negative coefficient in the equation for the EPA’s

utility for sanctioning, i.e. increases in the percent of the Hispanic population

are associated with both an increase in the incentive of a firm to pollute and a
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Table 4. Comparison of logit and strategic logit with partial observability using data on
firm noncompliance with clean air act.

Traditional Logit SLPO
Firm (¬Pollute):

Major Air Source 0.807∗ Major Air Source −1.184∗

(0.012) (0.015)
Percent African American 0.001 Firm (Pollute):

(0.001) Percent African American 0.001
Percent Hispanic 0.004∗ (0.001)

(0.001) Percent Hispanic 0.009∗

Poverty Rate −0.020∗ (0.001)
(0.001) Poverty Rate −0.040∗

Unemployment Rate −0.003 (0.005)
(0.003) Unemployment Rate −0.004

Median Household Income −0.001 (0.005)
(0.001) Median Household Income −0.001

Public 0.011 (0.001)
(0.027) Lagged Noncompliance 8.617∗

Lagged Noncompliance 4.371∗ (0.244)
(0.013) Constant −4.152∗

Constant −3.423∗ (0.116)
(0.059) EPA (Sanction):

Percent African American −0.004∗

(0.001)
Percent Hispanic −0.007∗

(0.001)
Poverty Rate −0.022∗

(0.004)
Unemployment Rate 0.040∗

(0.004)
Median Household Income −0.001

(0.001)
Public 0.004

(0.035)
Constant 1.435∗

(0.100)
Observations 650,472 650,472
Log-Likelihood −111,859.60 −110,710.25

Note: *p < 0.001, two-tailed. Standard error in parentheses.

decrease in the deterring effect from EPA sanctions. The effect of poverty rate is

nonlinear, as the signs on the coefficients work in opposite directions. Increases

in the poverty rate decrease a firms utility for polluting, but they also decrease

the EPA’s utility to sanction. In addition to these variables, the logit model

identifies unemployment rate as statistically insignificant, while SLPO indicates
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Table 5. Model fit of logit and strategic logit with partial observability on firm noncom-
pliance estimates.

Clarke Test∑n
i llSLPO,i − llLogit,i > 0 603,207

Positive, 1-side test (p-value) < 0.001
Negative, 1-side test (p-value) > 0.999
Equal, 2-side test (p-value) < 0.001

Vuong Test
Vuong 1,189.531
SE 0.277
t-statistic 4,287.058
p-value < 0.001

In-sample Predictions
Logit SLPO

% of Obs. Correct 95.0 95.0
% of Obs. Correct if Y = 1 67.5 67.5
% False Positive 2.3 2.3
Pred. % Y2 (Pollute|¬Sanction) — 2.2

Note: Estimates from Table 4. SLPO is model 1 and logit model 2 in
Clarke and Vuong tests.

that it increases the EPA’s utility from sanctioning, exerting a deterring effect.

Table 5 reports model fit comparisons of the SLPO and logit models. One

sees that SLPO allows us to estimate the percent of observations in which firms

pollute but are not identified by regulators as noncompliant—predicted unob-

served Y2 outcomes—something that a traditional logit model cannot do. In

this case, the model indicates that 2.2% of observations fit into this category.

Since the probability of each outcome can be calculated for every observation,

this feature of SLPO has potential practical benefits to regulators and watchdog

organizations. In this specific case, the model indicates that in 1,253 of the ob-

servations, a firm has a probability greater than 30% of being non-compliant yet

avoiding sanctions.

The bottom of the table compares the fit of the two models to one another.

The Clarke and Vuong tests each offer strong support for SLPO over the logit

model. SLPO has a greater log-likelihood in over 90% of the individual observa-

tions, while the mean log-likelihood is also greater. On balance, the fit statistics

suggest that the strategic model is a better fit to the observed data than the logit

model.

6. Conclusion

Strategic interactions among actors are commonly theorized across the be-
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havioral, economic, and social sciences. Common approaches to empirically mod-

eling these interactions are made difficult in the presence of nonignorable missing

data on individual actor choices. I provide a solution to this problem by using a

strategic logit with partial observability that is able to capture the theorized un-

derlying strategic process in the presence of data on actor actions missing not at

random. I use Monte Carlo simulations to demonstrate that the strategic logit

with partial observability outperforms other binary choice estimators, such as

traditional logit and split-sample logit. The Monte Carlo simulations show that

strategic logit with partial observability recovers the same parameter estimates,

and is only slight less efficient, as a full information strategic logit does with

complete information on individual actor choices.

I apply the estimator to the interaction of firms and regulators concerning

noncompliance with the Clean Air Act. Model fit statistics demonstrate the

strategic model better explains the observed data. The multiple equation nature

of the strategic model, moreover, is able to test specific causal mechanisms as they

pertain to each actor, something that traditional binary choice models cannot.

The estimator has numerous applications, such as criminal behavior, lending

practices by financial institutions, international and domestic conflict onset and

escalation, among others.

Supplementary Materials

Replication data and code are available at www.marknieman.net.
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